

SAMPLE PAPERS

Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.

Sample Paper - 3 Year Program

Vidyamandir Intellect National Incentive Test

Duration: 2.5 Hrs Maximum Marks: 265

PAPER SCHEME:

- The paper contains 45 Objective Type Questions divided into three sections: Section I, Section II and Section - III.
- Section I contains 5 Multiple Choice Questions (1-5) based on Mental Aptitude. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section II contains 25 Multiple Choice Questions (6-30) based on Mathematics. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- Section III contains 15 Multiple Choice Questions (31-45) based on Science. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

MARKING SCHEME:

- Section I: For each question, 5 marks will be awarded for correct answer and -1 negative marking for incorrect
 answer.
- **Section II**: For each question, **6 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.
- Section III: For each question, 6 marks will be awarded for correct answer and -1 negative marking for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name, Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

2

SUGGESTIONS:

- Before starting the paper, spend 2-2.5 minutes to check whether all the pages are in order and report any issues to the invigilator immediately.
- Try to attempt the Sections in their respective order.
- Do not get stuck on a particular question for more than 2 to 2.5 minutes. Move on to a new question as there are 45 questions to solve.

	as there are 45 questions to solve.									
				SE	ECTION -	I MENTA	L APTITUD	E		
1.					f the word		is coded as Z	CCQDRR, t	hen how will yo	ou code
	(A)	ATI	HKCH	IMF (B)	ATHL	CHMF (C)	ATHKDH	IMF (D)	ATHLDHNF	•
2.	If "SQ	UAR	E'' = 8	7 and "RE	CTANGLE	E'' = 94, then w	hat is the val	ue of "ROM	BUS" ?	
	(A)	96		(B)	94	(C)	89	(D)	97	
3.	5 chile	dren -	P, Q,	R, S and S	T are given	ranks based o	n an essay wi	riting compe	etition. Neither S	S nor Q
	got the	e best	rank.	P has exac	ctly one per	rson who got a	better rank t	han him. R i	s two ranks bet	ter than
				rd lowest		_				
	(A)	R		(B)	S	(C)	Q	(D)	T	
	5	8	10							
4.	30	72	?							
	(A)	110		(B)	90	(C)	120	(D)	130	
5.		walks	s 8 <i>km</i>	towards 1	North. Ther	he turns right	and walks a	further 8 km	n. How far and	in what
					ing point ?		12			
	(A)			orox, North		(B)	11 <i>km</i> app	rox, North-e	east	
	(C)	16 k	ım app	orox, North	n-east	(D)	14 <i>km</i> app	rox, North-e	east	
	(C)	16 <i>k</i>	кт арр						east	
	(C)	16 <i>k</i>	<i>m</i> app			- II MATI			east	
6.					SECTION	$-II \mid MATI$ $\frac{1}{r^2}$ is:	HEMATICS		east	
6.						$-II \mid MATI$ $\frac{1}{r^2}$ is:	HEMATICS		east 10	
	Let <i>x</i> (A)	=2+4	$\sqrt{3}$, th	nen the val	SECTION ue of $x^2 + \frac{1}{4}$	$- MAT $ $\frac{1}{x^2} \text{ is :}$ (C)	HEMATICS	(D)	10	
6. 7.	Let x (A) If $p(x)$	=2+4	$\sqrt{3}$, th	(B) $x^2 + 3x - k$	SECTION ue of $x^2 + \frac{1}{4}$	-II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for	HEMATICS 16 which $x + k$ is	(D)	10 p(x), is:	
7.	Let x (A) If p(x (A)	$= 2 + x$ 12 $x = x^2$ 1	$\sqrt{3}$, th	(B) $(x^2 + 3x - k)$ (B)	SECTION ue of $x^2 + \frac{1}{4}$ then the vector $\frac{1}{4}$	-II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C)	HEMATICS	(D)	10	
	Let x (A) If $p(x)$ (A) If $(2a)$	$= 2 + x$ 12 $x = x^2$ 1	$\sqrt{3}$, th	ten the value (\mathbf{B}) $x^2 + 3x - k$ (\mathbf{B}) Solution of	SECTION ue of $x^2 + \frac{14}{4}$ then the vector $y = 10x - \frac{1}{4}$	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is	HEMATICS	(D) s a factor of (D)	10 p(x), is:	
7. 8.	Let x (A) If p(x (A) If (2a)	$= 2 + \cdots$ 12 $x) = x^{2}$ 1 $\alpha - 1, \alpha$ 1	$\sqrt{3}$, the $4 - k^2$:) is a s	(B) $x^{2} + 3x - k$ (B) solution of (B)	SECTION ue of $x^2 + \frac{1}{4}$ then the vector $y = 10x - \frac{1}{2}$	-II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C)	HEMATICS 16 which $x + k$ is 0 s equal to: 3	(D) s a factor of (D) (D)	10 $p(x)$, is: 2	
7.	Let x (A) If p(x (A) If (2a)	$= 2 + \cdots$ 12 $x) = x^{2}$ 1 $\alpha - 1, \alpha$ 1	$\sqrt{3}$, the $4 - k^2$:) is a s	(B) $x^{2} + 3x - k$ (B) solution of (B)	SECTION ue of $x^2 + \frac{1}{4}$ then the vector $y = 10x - \frac{1}{2}$	-II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C)	HEMATICS 16 which $x + k$ is 0 s equal to: 3	(D) s a factor of (D) (D)	10 p(x), is: 2	ual to:
7. 8. 9.	Let x (A) If p(x (A) If (2a) (A) The m (A)	$= 2 + \frac{12}{x}$ $= x^{2} + \frac{1}{x}$ $= x^{2} - 1, \alpha$ $=$	$\sqrt{3}$, the $4 - k^2$) is a second of 10 me	(B) $x^{2} + 3x - k$ (B) solution of (B) umbers is (B)	SECTION ue of $x^2 + \frac{14}{14}$, then the very -1 $9y = 10x - \frac{2}{2}$ 220'. If 5 is 12	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C) subtracted from (C)	HEMATICS 16 which $x + k$ is 0 s equal to: 3 m every numb 16	(D) s a factor of (D) (D) per, then the (D)	10 p(x), is: 2 4 new mean is eq 15	ual to:
7. 8.	Let <i>x</i> (A) If <i>p</i> (<i>x</i> (A) If (2 <i>a</i> (A) The m (A)	$= 2 + \frac{1}{2}$ $= x^{2} $	$\sqrt{3}$, the $4 - k^2$.) is a second a coordinate of a coordinate of a coordinate coordinate.	ten the value (B) $(x^2 + 3x - k)$ (B) Solution of (B) tumbers is (B) cuboid of s	SECTION ue of $x^2 + \frac{14}{14}$, then the vector $\frac{1}{2}$, then the vector $\frac{1}{2}$ and $\frac{1}{2}$ urface area urface area.	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C) subtracted from (C) $54cm^2$ is doub	HEMATICS 16 which $x + k$ is 0 s equal to: 3 m every number 16 bled, then surface $k = 1$	(D) s a factor of (D) (D) per, then the (D) face area of the content of the conte	10 p(x), is: 2 4 new mean is eq 15 new cuboid is:	ual to:
7. 8. 9. 10.	Let x (A) If p(x (A) If (2a) (A) The m (A) If each (A)	$= 2 + 4$ 12 1 $\alpha - 1, \alpha$ 1 10 10 10 212	$\sqrt{3}$, the $4 - k^2$. It is a second a constant of a co	ten the value (B) $(x^2 + 3x - k)$ (B) solution of (B) tumbers is (B) tuboid of s (B)	section ue of $x^2 + \frac{14}{14}$, then the vector $y = 10x - \frac{2}{2}$. If 5 is 12 urface area 216cm	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C) subtracted from (C) $54cm^2$ is double of 'C'	HEMATICS 16 which $x + k$ is 0 s equal to: 3 m every number 16 bled, then surf $218cm^2$	(D) s a factor of (D) (D) per, then the (D) face area of (D)	10 p(x), is: 2 4 new mean is eq 15	ual to:
7. 8. 9.	Let x (A) If p(x (A) If (2a) (A) The m (A) If each (A)	$= 2 + 4$ 12 1 $\alpha - 1, \alpha$ 1 10 10 10 212	$\sqrt{3}$, the $4 - k^2$. It is a second a constant of a co	ten the value (B) $(x^2 + 3x - k)$ (B) solution of (B) tumbers is (B) tuboid of s (B)	section ue of $x^2 + \frac{14}{14}$, then the vector $y = 10x - \frac{2}{2}$. If 5 is 12 urface area 216cm	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C) subtracted from (C) $54cm^2$ is doub	HEMATICS 16 which $x + k$ is 0 s equal to: 3 m every number 16 bled, then surf $218cm^2$	(D) s a factor of (D) (D) per, then the (D) face area of (D)	10 p(x), is: 2 4 new mean is eq 15 new cuboid is:	ual to:
7. 8. 9. 10.	Let x (A) If p(x (A) If (2a) (A) The m (A) If each (A)	$= 2 + \frac{1}{2}$ 1 $(x) = x^{2}$ 1 $(x - 1, \alpha)$ 1 10 10 10 10 212 $3 - a\sqrt{3}$	$\sqrt{3}$, the $4 - k^2$. It is a second a constant of a co	(B) (a) (b) (c) (c) (c) (d) (e) (e) (e) (f) (e) (f) (f) (f	section ue of $x^2 + \frac{14}{14}$, then the vector $y = 10x - \frac{2}{2}$. If 5 is 12 urface area 216cm	- II MATI $\frac{1}{x^2}$ is: (C) alue of 'k' for (C) -12, then '\alpha' is (C) subtracted from (C) $54cm^2$ is double of 'C'	HEMATICS 16 which $x + k$ is 0 s equal to: 3 m every number 16 bled, then surf $218cm^2$	(D) (a a factor of (D) (D) (ber, then the (D) (a a face area of (D) (b)	10 p(x), is: 2 4 new mean is eq 15 new cuboid is:	ual to:

27.

12.	If x ²	$-y^2 + z^2 = 20$ and	1 2 1 2 1	z = 0 than m	. N.S. S.Y.	is aqual to :				
12.	(A)	y + z = 20 and	(\mathbf{B})	-2 = 0, then $xy = -10$	(\mathbf{C})	8	(D)	-8		
12			` ′		` ′		` ′			
13.		lue of function j						2		
1.4	(A)	-1 11 TX	(B)	0	(C)	1	(D)	2		
14.	_	on seiis a 1.v. a hen overall.	t Ks. 100	000 making a pro	OHI OF 23	5% and a fridge	at Ks. 20	0000 making a loss of		
	(A)	Profit is Rs. 30	00		(B)	Loss is Rs. 500	0			
	(C)	Loss is Rs. 300	0		(D)	Profit is Rs. 50	00			
15.	In a tri	angle $\Delta PQR, PQ$	Q = PR ar	ad QR is produce	d to S su		=100° the	en $\angle P$ is:		
	(A)	20°	(B)	40°	(C)	60°	(D)	80°		
16.	Two co		olumes i	n the ratio of 2:	1 and th	neir heights in ra	tio 1 : 2,	then the ratio of their		
	(A)	1:2	(B)	2:1	(C)	1:4	(D)	4:1		
17.	The va	alue of $\alpha^3 + \beta^3$	$-12\alpha\beta$ +	64 is equal to ze	ro if:					
	(A)	$\alpha + \beta = 1$	(B)	$\alpha - \beta = 1$	(C)	$\alpha + \beta = 4$	(D)	$\alpha + \beta + 4 = 0$		
18.	The ex	pression which i	s not a fa	actor of $x^6 - 7x^3$	3 – 8 is ·		<u> </u>			
10.	(A)	x-2	(B)	x+1	(C)	x-1	(D)	$x^{2}-x+1$		
19.	` ′				1 1		` ′	ume of the cuboid is:		
17.	(A)	$12cm^3$	(B)	$32cm^3$	(C)	$28cm^3$	(D)	$24cm^3$		
20.	` ′	s the missing nu	` '				(D)	24011		
	(A)	20	(B)	25	(C)	26	(D)	28		
21.		ne at which hand		e and hour hand				and 4 pm is:		
	(A)	3/11 hour past			(B)	4/11 hour past 3				
22.	(C) Prof I	5/11 hour past : Rao walks to the	1	and comes back		6/11 hour past :		n to make the round		
	Prof. Rao walks to the market and comes back in an auto. It takes him 150 min. to make the round trip. If he takes an auto both ways it takes him 50 minutes. On Sunday, he decides to walk both ways.									
		ong would it take		M						
	(A)	200 minutes	(B)	250 minutes	(C)	300 minutes	(D)	60 minutes		
23.	2.2 km	travelling from A. Find the radius 30 cm	of whee			250 revolutions. 28 cm	Distanc (D)	e between A and B is 26 cm		
24.	(A) A shor		(B) his price		(C) es weigl		` /	an the actual weight.		
-	The to	tal profit earned	by him v	vill be :				_		
25.	(A) If 12 r	30%	(B)	88%	(C)	37.5%	(D)	None of these days can 8 men and		
25.		men do the same		_	X III 32 (iays, men in no	w many	days can o men and		
	(A)	28 days	(B)	24 days	(C)	25 days	(D)	30 days		
26.	Sahu, Rahu and Umang can do a piece of work in 10, 15, 20 days respectively. If they all work									
	-	er for 3 days, the					(D)	1/4		
	(A)	1/20	(B)	1/15	(C)	7/20	(D)	1/4		

If H is height, S is curved surface area and V is volume of a cone, then :

39.

(A)

(A)

Parenchyma

(B)

Voluntary and involuntary muscles

Cardiac and skeletal muscles are respectively:

							viq.	sample raper 5 rear		
	(A) (C)	$\pi VH^3 - SH^2 + 3\pi VH^3 + 9V^2$			(B) (D)	$3\pi VH^3 + V^2 =$ $3\pi VH^3 - 9V^2$		2		
28.	If $x =$	m^2 and $y = m$ is ralue m is:	a soluti	on of the equation	,	y + 6 = 0, then the	e ratio o	of greatest value of m to		
	(A)	3:2	(B)	4:3	(C)	5:2	(D)	2:1		
29.	If px^3	$+qx^2+x-6$ is α	divisible	by $'x+2'$ and 1	eaves re	mainder 4 when	divided	by $'x-2$; then:		
	(A)	$p^3 + q^3 = 18$	(B)	$q^3 - p^2 = 6$	(C)	p+q=3	(D)	$q^3 - p^3 = 8$		
30.	In trian (A) (C)	ngle ΔLMN , $\angle M$ $\angle MLN = 48^{\circ}$ $\angle MLN = 72^{\circ}$	I = 2∠N	V.P is a point on	MN suc (B) (D)	h that LP bisects $\angle MLN = 60^{\circ}$ $\angle MLN = 36^{\circ}$	∠MLN	V and $MN = NL$, then:		
				SECTION -	III SC	CIENCE				
31.	The m (A) (C)	olecular weight of Positive non-zo		-	eight is al (B) (D)	lways a: Fraction Integer				
32.	The peabout: (A)		lement l	M is 52 in its ox	ide of m	olecular formula	M ₂ O ₃ (D)	. Its atomic mass is		
33.		ate of matter who	` /				(12)	CE 1980		
	(i)	Solid state	(ii)	Liquid state	(iii)	Gaseous state				
	(A)	(i) and (iii)	(B)	(ii) and (iii)	(C)	(i) and (ii)	(D)	(i),(ii) and (iii)		
34.	The proof (A)	rinciple of crysta Liquids with lo		is: iling points boil	off first	55	OA			
	(B) (C) (D)	The rate of diff	fusion o	f liquids varies	out fror	n saturated solut	ion whe	en cooled		
35.	 (D) All liquids are not miscible in water Which of the following statements is not true about suspension? (A) The particles of suspension can be separated from solvent by the process of filtration. (B) When the suspension is kept undisturbed, the particles of suspension settle down. (C) A suspension is homogeneous in nature. (D) Scattering of light takes place in suspension. 									
36.		a latin word for A little room	(B)	A little life	(C)	A little brick	(D)	None of these		
37.		ving cells in pon	d with i	mproved micros	scope wa	as discovered by:	` ,			
20	(A)	Robert Brown		Robert Hooke	(C)	Leeuwenhoek	(D)	George Palade		
38.	Simple	e permanent tissu	ies are:							

(C)

(B)

Sclerenchyma (**D**)

Involuntary and voluntary muscles

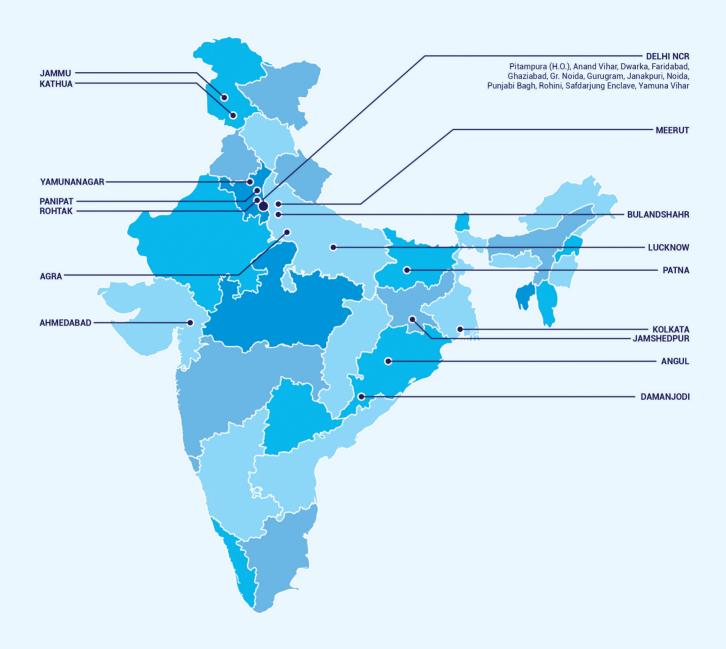
All of these

Collenchyma

- (C) Voluntary and voluntary muscles
- **(D)** Involuntary and involuntary muscles

- **40.** Proteins are synthesized by:
 - (A) Ribosomes
- (B) Plastids
- (C) Mitochondria (D)
 -) Nucleus
- **41.** An aeroplane moves 400 m towards North, 300 m towards West and then 1200 m vertically upwards. Its displacement from the initial position is:
 - (**A**) 1300 m
- **(B)** 1400 m
- (**C**) 1500 m
- **(D)** 1600 m
- **42.** A particle of mass 5 kg is moving with a constant velocity of 10 m/s along positive X-axis. The momentum of particle and the net external force acting upon the particle are respectively:
 - (A) 49 Ns, 3 N
- (**B**) 50 Ns, 0 N
- (C) 59 Ns, 2 N
- **(D)** 47 Ns, 1 N
- 43. A tunnel is dug along a diameter of the earth of mass M_e and radius R_e . The force on a particle of mass m placed in the tunnel at a distance r from the centre is:
 - $(\mathbf{A}) \qquad \frac{\mathrm{G}\,\mathrm{M}_{\mathrm{e}}\mathrm{m}}{\mathrm{R}_{\mathrm{e}}^{3}\mathrm{r}}$
- $(\mathbf{B}) \qquad \frac{\mathrm{G}\,\mathrm{M}_{\mathrm{e}}\mathrm{r}}{\mathrm{R}_{\mathrm{o}}^{2}\,\mathrm{r}^{2}}$
- (C) $\frac{G M_e m r}{R^3}$
- $(\mathbf{D}) \qquad \frac{\mathrm{G}\,\mathrm{M}_{\mathrm{e}}\mathrm{m}\,\mathrm{r}}{\mathrm{R}_{\mathrm{e}}^2}$

- **44.** The unit of relative density is:
 - (A) $g cm^{-3}$
- **(B)** $kg m^{-3}$
- (C) $kgF m^{-3}$
- (**D**) No unit


- **45.** The rate of change of displacement is called:
 - (A) Momentum
- (B) Speed
- (C) Velocity
- (**D**) Acceleration

IIT JEE I MEDICAL I FOUNDATIO

3 Year Sample Paper Answer Key									
Code-A Mapping	Code-A_Answer Key	Code-A Difficulty	Code-A Subject	Code-A Topic (Chapter)	Code-A Skill (Base)	Code-A +Ve Marks	Code-A -Ve Marks		
1	А	Easy	Mental Aptitude	Alphabet Test	Logical	5	1		
2	В	Medium	Mental Aptitude	Coding	Logical	5	1		
3	D	Difficult	Mental Aptitude	Analogy	Logical	5	1		
4	Α	Easy	Mental Aptitude	Figure Matrix	Logical	5	1		
5	В	Medium	Mental Aptitude	Direction	Logical	5	1		
6	В	Easy	Mathematics	Rational Numbers	Calculation	6	1		
7	С	Easy	Mathematics	Polynomial	Conceptual	6	1		
8	В	Easy	Mathematics	Linear Equation	Conceptual	6	1		
9	D	Easy	Mathematics	Number System	Conceptual	6	1		
10	В	Easy	Mathematics	Mensuration	Memory	6	1		
11	С	Medium	Mathematics	Polynomial	Calculation	6	1		
12	В	Easy	Mathematics	Polynomial	Memory	6	1		
13	В	Easy	Mathematics	Polynomial	Conceptual	6	1		
14	С	Medium	Mathematics	Profit and Loss	Calculation	6	1		
15	А	Easy	Mathematics	Triangle	Memory	6	1		
16	В	Easy	Mathematics	Mensuration	Memory	6	1		
17	D	Easy	Mathematics	Polynomial	Memory	6	1		
18	С	Easy	Mathematics	Polynomial	Conceptual	6	1		
19	D	Easy	Mathematics	Mensuration	Memory	6	1		
20	С	Easy	Mathematics	Number System	Conceptual	6	1		
21	Α	Medium	Mathematics	Lines and Angles	Conceptual	6	1		
22	Α	Medium	Mathematics	Linear Equation	Calculation	6	1		
23	С	Medium	Mathematics	Linear Equation	Conceptual	6	1		
24	С	Easy	Mathematics	Profit and Loss	Application	6	1		
25	В	Medium	Mathematics	Comparing Quantities	Calculation	6	1		
26	С	Medium	Mathematics	Direct and Inverse Proportion	Calculation	6	1		
27	С	Medium	Mathematics	Mensuration	Calculation	6	1		
28	Α	Easy	Mathematics	Comparing Quantities	Calculation	6	1		
29	D	Easy	Mathematics	Polynomial	Conceptual	6	1		
30	С	Easy	Mathematics	Triangle	Calculation	6	1		
31	Α	Medium	Science	Atoms and Molecules	Conceptual	6	1		
32	D	Medium	Science	Atoms and Molecules	Calculation	6	1		
33	С	Easy	Science	Matter In Our Surroundings	Conceptual	6	1		
34	В	Easy	Science	Is Matter Around us Pure	Conceptual	6	1		
35	С	Easy	Science	Is Matter Around us Pure	Memory	6	1		
36	Α	Moderate	Science	Cell	Conceptual	6	1		
37	С	Easy	Science	Cell	Memory	6	1		
38	D	Easy	Science	Tissues	Application	6	1		
39	В	Moderate	Science	Tissues	Conceptual	6	1		
40	А	Moderate	Science	Cell	Application	6	1		
41	А	Easy	Science	Motion	Calculation	6	1		
42	В	Easy	Science	Force	Conceptual	6	1		
43	С	Medium	Science	Gravitation	Memory	6	1		
44	D	Easy	Science	Gravitation	Conceptual	6	1		
45	С	Easy	Science	Motion	Conceptual	6	1		

VMC CENTRES ACROSS INDIA

 Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.
 Ph.: (011) 45221191 - 93

www.vidyamandir.com

